Rutgers University: Algebra Written Qualifying Exam January 2006: Day 1 Problem 4 Solution

Exercise. Let A be a complex matrix of order n. Prove that A is nilpotent if and only if all of its eigenvalues are equal to zero.

Solution. Let A be an $n \times n$ complex matrix. A is nilpotent $\iff \exists k \in \mathbb{N}$ such that $A^k = 0$ (\Longrightarrow) Suppose A is nilpotent. Then $A^k = 0$ for some $k \in \mathbb{N}$ Let λ be an arbitrary eigenvalue of A Then $\exists a \text{ nonzero vector } \vec{v} \text{ s.t.}$ $A\vec{v} = \lambda\vec{v}$ $0 = A^k \vec{v}$ $= A^{k-1}(A\vec{v})$ $=\lambda A^{k-1}\vec{v}$ $=\lambda^k \vec{v}$ $\lambda = 0$ since $\vec{v} \neq 0$ Since λ was an arbitrary eigenvalue of A, all of the eigenvalues of A must be zero. (\Leftarrow) If all of the eigenvalues of A are zero, then looking at the Jordan decomposition of A, we have $A = P \begin{bmatrix} 0 & a_1 & & \\ & \ddots & \ddots & 0 \\ 0 & & \ddots & a_{n-1} \\ 0 & & 0 \end{bmatrix} P^{-1} \quad \text{where } a_i = 1 \text{ or } 0$ $A^{n} = P \begin{bmatrix} 0 & a_{1} & & \\ & \ddots & \ddots & 0 \\ 0 & & \ddots & a_{n-1} \\ 0 & & 0 \end{bmatrix}^{n} P^{-1},$ and since it is an $n \times n$ upper triangular matrix with 0 on its main diagonal $A^n = 0$ A is nilpotent