Rutgers University: Algebra Written Qualifying Exam
January 2006: Day 1 Problem 4 Solution

Exercise. Let A be a complex matrix of order n. Prove that A is nilpotent if and only if all of its
eigenvalues are equal to zero.

Let A be an n x n complex matrix.
A is nilpotent <= Ik € N such that A* =0
(=) Suppose A is nilpotent.
Then A* = 0 for some k € N
Let A\ be an arbitrary eigenvalue of A
Then Ja nonzero vector ¥ s.t.
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Since A was an arbitrary eigenvalue of A, all of the eigenvalues of A must be zero.

(<) If all of the eigenvalues of A are zero, then looking at the Jordan decomposition of
A, we have
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since it is an nxn upper triangular matrix
with 0 on its main diagonal

— A"=0
=—> A is nilpotent




