Rutgers University: Algebra Written Qualifying Exam
 January 2006: Day 1 Problem 4 Solution

Exercise. Let A be a complex matrix of order n. Prove that A is nilpotent if and only if all of its eigenvalues are equal to zero.

Solution.

Let A be an $n \times n$ complex matrix.
A is nilpotent $\Longleftrightarrow \exists k \in \mathbb{N}$ such that $A^{k}=0$
(\Longrightarrow) Suppose A is nilpotent.
Then $A^{k}=0$ for some $k \in \mathbb{N}$
Let λ be an arbitrary eigenvalue of A
Then \exists a nonzero vector \vec{v} s.t.

$$
\begin{aligned}
A \vec{v} & =\lambda \vec{v} \\
0 & =A^{k} \vec{v} \\
& =A^{k-1}(A \vec{v}) \\
& =\lambda A^{k-1} \vec{v} \\
& \vdots \\
& =\lambda^{k} \vec{v}
\end{aligned}
$$

$$
\Longrightarrow \quad \lambda=0 \quad \text { since } \vec{v} \neq 0
$$

Since λ was an arbitrary eigenvalue of A, all of the eigenvalues of A must be zero.
(\Longleftarrow) If all of the eigenvalues of A are zero, then looking at the Jordan decomposition of A, we have

$$
\begin{aligned}
& A=P\left[\begin{array}{cccc}
0 & a_{1} & & \\
& \ddots & \ddots & 0 \\
0 & \ddots & a_{n-1} \\
0 & & 0
\end{array}\right]^{-1} \quad \text { where } a_{i}=1 \text { or } 0 \\
\Longrightarrow & A^{n}=P\left[\begin{array}{cccc}
0 & a_{1} & & \\
& \ddots & \ddots & 0 \\
0 & \ddots & a_{n-1} \\
& & & 0
\end{array} P^{n}, \quad\right. \text { and } \\
\Longrightarrow & A^{n}=0 \\
\Longrightarrow & A \text { is nilpotent }
\end{aligned}
$$

